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This paper discusses the refraction of plane shock waves in media with arbitrary 
equations of state. Previous work is reviewed briefly, then a rigorous definition of 
wave impedance is formulated. Earlier definitions are shown to be unsatisfactory. 
The impedance is combined with the boundary conditions a t  the media interface to 
study both head-on and oblique shock incidence. The impedance determines the 
nature of the reflected and transmitted waves, their intensities, and the fractions of 
energy and power that are reflected and transmitted. The refractive index is also 
defined and determines whether or not a wave will be refracted, and also helps 
determine whether the wave system will be regular or irregular. The fundamental law 
of refraction is derived and shown to be a consequence of the fact that an arbitrary 
point on a shock or an expansion wave follows a ray path of minimum time between 
any two points on the path. This is a generalization of Fermat’s Principle to media 
that are deformed and convected by the waves propagating through them. 

1. Introduction 
Consider a longitudinal wave i propagating in a compressible medium and suppose 

that the wave eventually encounters a second medium, which causes its velocity to 
change from U,, to U,, say. Then by definition i has been refracted if U, differs from 
Ui. After refraction i becomes the transmitted wave t ,  while the second medium 
becomes the receiving medium (figure 1). The refractive index n of the media is 
defined as 

( 1 )  

When n < 1, the refraction is slow-fast, and when n > 1, it is fast-slow, but there is 
no refraction when n = 1 even if the media differ in composition or in state. 

For simplicity it will be assumed that the media are always in contact, and that 
the interface between them is a plane surface. This means that any convection 
induced in the media by the passage of the waves must be such that the normal 
components of the media velocity vectors u, and ut are continuous across their 
interface. It will also be assumed that the pressure Y is continuous. A typical 
refraction results in the appearance of a reflected wave r as i crosses thc interface, so 
that  the media boundary continuity conditions are 

u, 
9 

n=-. 

The wave media are presumed to be contained within a system with well-defined 
adiabatic boundaries, and they, together with the state parameters of the media, 
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FIGURE 1. Refraction of a normal shock wave at head-on incidence. 

namely, the pressure P, and the temperature T ,  completely define the initial state of 
the system. 

At say time r = 0 ,  the incident wave i is generated by a suitable boundary 
disturbance such as a driving or withdrawing piston. A driving piston redu 
volume of the system in unit time so it generates compression waves, which can 
either be a band of isentropic waves or a shock. In general the withdrawing piston 
generates only expansion waves. I n  this paper attention will be limited to those 
boundaries that cause either steady state or self-similar motions inside the system. 
Typically. such motions have constant states upstream and downstream of the wave 
system with no length or time scale associated with the two states. Thc probleni thcri 
is to find the flow connecting the two states ; it is usually called thc Riemann problcm 
(Courant & Friedrichs 1948, p. 181). 

In the refraction illustrated in figure 1 the waves are parallel to the intcrface. so 
thc angle of incidence that i makes to thc interface is zero. o), = 0. The phrnomena 
become much more complicated when this angle is not zero. I n  fact many diffcrcnt 
wave systems have been detected during experiments with gases. Some of them are 
illustrated in figure 2. For analytical purposes it will be convenient to classify thcse 
systems into two types. In  the first type the waves are all locally plane and meet at 
a single point on the interface ; these are the regular refractions. When i is a shock 
wave, then it is found that so also is the transmitted wave t .  but that  the reflccted 
wave may be either a shock r or an expansion e (figure 2 a . b ) .  Thc natures and 
intensities of the reflected and transmitted waves, and also the fractions of energy 
that are reflected and transmitted at the interface. arc essentially detcrmined by the 
wave impedance 2 ;  this quantity will be defined rigorously below. The second type 
comprises the iwegular refractions and are simply all those wave systems that fail the 
definition of the first type. For thcse refractions one often sees Mach reflections 
appearing in the incident medium, and when the refraction is also slow-fast ( n  < 1). 
there is often a precursor shock present in the receiving medium. Grricrally speaking. 
the theory is quite successful for the regular refractions but rathcr unsuwessful for 
the irregular ones. For simplicity thc undisturhd interface betwccn any two media 
will be assumed to br planar. However the piston motion, and the waves generatcd 
by it and the refraction, deform the media and set up cwnvection currcmts in them. 
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FIGURE 2. Typical regular and irregular shock-wave refraction systems. (a) Regular refraction with 
a reflected shock wave r ,  RRR. ( b )  Regular refraction with a reflected expansion wave e ,  RRE. (c) 
Irregular refraction with a Mach reflection, TRMR. ( d )  Irregular refract.ion wit,h a free-precursor 
shock system ts, FPR. i ;  incident shock ; t ,  transmitted shock : r ,  reflected shock ; e ,  expansion wave : 
n, Mach shock; ts, transmitted and side shock precursor shocks; k ,  modified shock; mm, media 
interface ; I, incident medium ; 11, transmitting medium ; wi ,  angle of incidence ; 0,. angle of 
reflection; wt ,  angle of transmission. 

One consequence is that the media interface, mm, is deflected by the passage of the 
waves, and therefore it does not necessarily lie in a single plane (figure 2 ) .  

The objective of the present paper is to study the refraction of longitudinal, 
nonlincar waves which are propagating in compressible media whose equations of 
state are subject only to the restriction that each medium is in a single phase - 
although the phases of each medium are not necessarily the same ones. It will be 
assumed that the media are in local thermodynamic equilibrium (LTE) and that the 
equilibrium is stable. Violation of this condition leads to a change in the structure of 
the wave system and thc appearance of a contact discontinuity cd, such as when a 
regular refraction changcs into an irregular system with a Mach reflection appearing 
in the initial medium (figure 2 c ) .  

By definition a wave will be refracted whenever the refractive index n of the 
medium in which it is propagating changes, that  is, n + 1. The quantities nand  2 will 
be found to be particularly useful for classifying and analysing the various refracting 
wave systems, in fact for the special case of refraction at  a zero angle of incidence 
wi = 0, knowledge of n for the media and Z for each of the waves is tantamount to 
a complete one-dimensional solution of the problem. For the more general and much 
more complicated refraction a t  oblique incidence it is necessary to supplement n and 
2 with the fundamental law of refraction which will be derived below. The law 
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reduces to Snell’s law a t  the acoustic limit. Then with this extra information it is 
shown that n is a measure of the capacity of the system to bend i as it passes into 
the second medium. The quantities n for the media and Z for the waves again amount 
to a solution, although only for regular refraction. Much more detailed information 
is required to  solve an irregular system. Again, in the interests of simplicity the 
phenomena that will be discussed will be limited to those that are either in the 
stationary or pseudostationary (self-similar) state. Naturally this excludes for 
example oscillatory or accelerating wave systems. 

Finally it will bc shown that t)he ray path traced out by any point on a propagating 
wave is one of the minimum time, which is a generalization of Fermat’s Principle to 
media that are deformed and convected by the passage of the wave. It is found that 
the refraction law is just the condition that the time has a stationary value, and the 
fact that it is also a minimum is a necessary condition that the local thermodynamic 
equilibrium should be stable. 

2. Previous work 
Experiments with shock waves refracting in gases have been done by Jahn (1956). 

Abdel-Fattah, Henderson & Lozzi (1976), and Abdel-Fattah & Henderson (1978a, b) .  
More recently, Reichenbach (1985) has done experiments with shocks refracting at 
thermal layers, and Haas & Sturtevant (1987) with refraction by gaseous cylindrical 
and spherical inhomogeneities. Earlier, Dewey (1965) reported on precursor shocks 
from large-scale explosions in the atmosphere. Some multiphase experiments have 
also been donc : Sommerfeld (1985) has studied shocks refracting from pure air into 
air containing dust particles, while Gvozdeava et al. (1986) have experimented with 
shocks passing from air into a variety of foam plastics. 

Early work of the theory or regular refraction was done by Taub (1947) and 
Polachek & Seeger (1951). Later, Henderson (1966) extended this work to irregular 
refraction with the help of polar diagrams. He also generalized the definition of 
shock-wave impedance given by Polachek & Seeger for the refraction of normal 
shocks (Henderson 1970), but it will be shown below that these definitions are 
unsatisfactory. Flores & Holt (1982) have studied the refraction of shock waves a t  
air-water interfaces. The Whitlam theory has been applied to shocks propagating in 
non-uniform media by Catherasoo & Sturtevant (1983), and the results compared 
with the Abdel-Fattah & Henderson data, 

More recently numerical technique has been applied to refraction problems : 
Picone et al. (1984) have studied the vorticity generated when a shock is refracted by 
a flame. They compared their results with Markstein’s (1964) experiments and claim 
to have reproduced most of his experimental observations. Picone et al. (1986) have 
studied the Haas & Sturtevant experiments a t  airlhelium and airlfreon, cylindrical, 
and spherical interfaces. Fry & Book (1986) have considered refraction a t  heated 
layers, and Glowacki et al. (1986) have studied refraction a t  high-speed sound layers. 
Sigimura, Tokita & Fujiwara (1984) have studied refraction in a liquid-bubble 
system. 

3. Wave impedance, Z 
3.1. Normal-shock impedunw 

The wave impedance is defined in general terms as the force per unit area (pressure, 
stress) which must be applied to a medium in order to  impart a unit particle velocity 
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to some part of the medium. Consider a piston driving into a compressible medium 
a t  a velocity Upi, and generating a normal shock wave i with wave velocity Ui, figure 
1,  then by definition, 

(4) 

were P is the pressure, u is the particle velocity and the subscripts 0, 1 refer to 
conditions upstream and downstream of the shock respectively. A shock wave is 
compressive, so Pl-Po > 0,  then Zi > 0 if the piston drives in the positive x- 
direction, and Zi < 0 if in the negative direction. The quantities (Pl-Po), and 
(u, -uo) are discontinuous across the shock, but they become infinitesimal a t  the 
acoustic limit, and from (4) one then recovers the acoustic ‘Ohm’s law ’, AP = Z,Au, 
where 2, is the acoustic impedance. If the definition were to be extended to 
oscillatory motion then 2, would have to be defined in terms of the complex pressure 
and complex velocity (Kinsler et al. 1982, Chapter 6), but in the interests of simplicity 
the definition is restricted to the Riemann-type problems for stationary and 
pseudostationary (self-similar) motion where Upi = u1 -uo is constant. 

It is convenient to express Zi entirely in terms of variables of state, which requires 
that (ul-uo) be eliminated from (4). This can be done with the help of the continuity 
and momentum equations, which for the above restrictions become 

P -Po - P1-P0 z. = +L - -, 
u p i  ~ 1 -  ~0 

I - -  

%/V1 = uo/vo, 

P, + u;/v, = Po + u:/vo, 

where v is the specific volume. These give 

and therefore ul-uo = ~[- (V, -V0)(P, -Po)]~ ,  (9) 

and on substituting into (4), 

z i=*  - -  [ (:::)I> 
or alternatively using (7) and (8), 

where p is the density. Only the definition of Z ,  and the equations of continuity and 
momentum have been used to  derive (lo),  (11) and (12), so the equations are valid 
for any Rayleigh process, such as a normal shock wave, in a medium with an 
arbitrary equation of state, P = P(s ,  v) say, where s is the entropy. However we have 
assumed that the system is adiabatic and that the medium is in stable, local 
thermodynamic equilibrium. These conditions are nearly always satisfied when the 
medium is in a single phase, Bethe (1942). In  these circumstances his ‘central 
(theorem) ’ guarantees a unique solution to the Hugoniot equations (5)-(9), given 
only the initial state of the medium and Up&. One can calculate for example 
(Pl -Po) and then Zi. Conversely if the initial state Upi and Zi are given then this 
amounts to a solution of the equations. 
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FIQURE 3. Isentropic compression and expansion waves generated by a slowly 
accelerating piston. 

It will be noticed from (10) that -2; is the slope of the Rayleigh line, and that 
i t  is also proportional to the average adiabatic bulk modulus, APlAv. Furthermore, 
by (11)  Zi is proportional to the shock velocity U i ,  because in shock coordinates 
- U, = u,, but this means by (7)-( 11) that 2, also depends on the amplitude (PI - Po), 
or (q-v,) of the shock. Therefore Zi depends not only on the properties of the 
medium, such as p,, but also on the boundary conditions of the system, namely Upi ,  
which determine the wave speed and amplitude for a given state. By contrast the 
wave acoustic impedance is a property of the medium and does not depend on the 
wave amplitude. 

The special case when the medium is a perfect gas 

When a normal shock propagates through a perfect gas, one can use the 
Rankine-Hugoniot equations (Ames 1953) to obtain a relationship between PJP0 
and vl/vo, and on substituting it into (10) we get 

where y is the ratio of specific heats. At the acoustic limit when Pl/Po i; 1, then 
2, --f fp ,  a,, as it should. Equation (13) can be compared with the Polachek & Seeger 
(1951) definition, namely, 

At the acoustic limit, Z P s ~ + p , a ,  4 2 / P ,  or Z,,+f (2y/RT,)i, where R is the gas 
constant and To the temperature of the undisturbed gas. Thus Z,, is a function of 
To only, and not of both a,(T,), and p,, as required if Z,, is to be consistent with the 
acoustic impedance, so their definition is unsatisfactory. 

3.2. The slowly and uniformly accelerating piston 
Suppose that after a slow and uniform acceleration, a piston reaches a constant 
velocity UpI, figure 3. Then there will be an unsteady band of compression waves on 
the driving side and a similar band of expansion waves on the withdrawing side. It will 
be assumed that the waves are isentropic, and that x = 0 when r = 0. Now choose a 
point x which a t  the time r is ahead of the right-moving waves. If x moves a t  the 
same speed a, as the front wave, then it will always be ahead of it (so long as a shock 
has not formed). Introducing the self-similar coordinate X = x/r, then X ,  = x0/7 = a, 
will be chosen so that i t  is always ahead of the compression waves. Similarly, 
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XI = xl/r = Upi will be chosen so that it is always between the piston and the last 
wave. On the withdrawing side one can again choose X,, XI, to be always on either 
side of the wave band. Then for a self-similar system both PI and u1 = U,, do not 
change with time at X,, and neither do Po nor u,, at X,, even though the flow is 
unsteady. It follows by (4) that  2, is also constant. So this is also a Riemann problem. 
For the special case of isentropic waves in a perfect gas, 

2 2 
--u +-a, = -uo-tt a0 

I - y -1  Y - 1  

and so 

and on substituting into (4), 

where we have also used a: = yPo/p0. It is easily verified that in the acoustic limit 
Z,-t-tp,a,,, as it, should. 

4. Refraction of a normal shock wave at an interface between two media 
4.1. Definition of the re$ection and transmission coeficients 

Consider a plane shock wave i propagating in a medium with an arbitrary equation 
of state, and which is initially a t  rest, figure 1. Suppose that the shock then 
encounters a second medium, also initially a t  rest, but with a different impedance to 
t h e  first one. It will be assumed that the interface mm between the two media is plane 
and parallel to the shock, so that i makes a head-on collision with it. Then i may be 
refracted a t  the interface and give rise to a transmitted shock t in the second medium, 
and a reflected wave in the first medium which may either be a shock r ,  or an 
expansion e. 

The pressure reflection and transmission coefficients for this system are defined as 
follows : 

p2 - PI 

P1-Po’ 

PI  -Po’ 

R E -  

T = L  P-Po 

The shock intensity I is defined to be the average power flux through unit area 
normal to the direction of propagation. For example, for i ,  

I, = (P,-P,,) (u,-uo) = (PI--PO)UPi,  

with similar definitions for I, and I,. Combining with (4), 
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and again also for I,, and I,. The intensity reflection and transmission coefficients are 
defined as 

The power transmitted along a stream tube of cross-sectional area A is AI ,  so the 
power reflection and transmission coefficients are defined as 

4.2. The boundary conditions at the interface 

The boundary conditions that must be satisfied a t  the interface are (2) and (3), which 
may be more conveniently written as 

and so 

where the last equation is written in terms of the piston (particle) vclocities. Dividing 
(25) by (27), 

(28) 
(P,--l)+(pl-Po) - -- pt-p 

O = z,, 
(u1 -%I) + (uz - %) Ut -uo 

and then eliminating (u,--uO), etc. with Zi ,  etc. results in 

but when we divide (25) by (Pl-Po) we get, 

T = 1+R,  (30) 

and so 

The shock i can be imagined as being generated by a piston which impulsively 
acquires the velocity Upi a t  7 = 0, and in the positive x-direction, Upi > 0. cince S’ a 
driving piston will compress the medium (Pl-Po) > 0, and Zi > 0. After refraction 
the piston begins driving the second medium, also in the positive direction, and 
compresses it so 2, > 0 whenever Zi > 0. The conclusion is valid irrespective of the 
nature of the reflected wave. By (31) we now have T > 0. If the piston drives in the 
negative x-direction Zi < 0 and 2, < 0, but again T > 0. By (29), when IZ,I > lZil > 0, 
then R > 0, and the reflected wave is a shock, but when (Zil > IZ,J > 0, then R < 0, 
and it is an expansion. When the media have the same impedance 2, = Zi ,  then 
R = 0, and the reflected wave is a Mach line or acoustic degencracy, Pz = PI, and 
there is complete transmission !P = 1, by (31). It is concluded that thc sign of Zt is 
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always the same as Z i ,  and T is always positive, while R may be positive or negative 
depending on whether 12,I > JZil or vice versa, or R will he zero when IZ,J = IZJ. 

The left-hand side of (28) may be defined to be the impedance for the combined 
incident and reflected waves Zir ,  or Zi, .  Thus is it concluded that the system responds 
to the driving piston by adjusting the wave impedances of the two media to be equal, 
2, = Z,, or Zi, = 2,. 

4.3. The refraction limits 

4.3.1. The acoustic limit 

known acoustic formulas (Kinsler et al. 1982) 
At this limit 2, + rt = pt a,, 2, +Zi  + ri = po a,, and (29) and (31) reduce to the well- 

1 - ri /r t  2 

1 + r i / r t  
R=- , T=-. 

1 + r i / r t  

These equations are symmetrical in ri and r,, so R and T remain the same irrespective 
of whether i passes from the first medium into the second, or vice versa. This is the 
principle of acoustic reciprocity, but it cannot be extended to shock waves because 
(29) and (31) are not symmetrical in 2, and 2, 

4.3.2. The rigid limit 
If the impedance of the second medium increases without limit, 2, + 00, then i t  will 

become a rigid body. We shall assume that Zi and Z r  will remain finite and non-zero 
as this happens, then 

During head-on refraction there is no change in the cross-sectional area, so R, and 
T, will be the same as R, and TI. We see that although a shock wave can penetrate 
a rigid body there is no energy transmitted into it ; this is total rejection. The reflected 
wave is always a shock a t  this condition because R > 0. 

The analysis can be taken further for the special case when the first medium is a 
perfect gas. The inverse shock strengths ti = Po/P,, and &. = Pl/Pz, are now related 
by the von Neumann (1943) formula 

from which 

so for 1 2 ti B 0, 

(34) 

where the left-hand limit occurs for an acoustic wave ti = 1, and the right-hand limit 
when the shock is infinitely strong, ti = 0. Furthermore, 

37- 1 
2 < T < -  

y -1  ’ 

so the intensity of a shock which penetrates a rigid body is at least double that of the 
incident shock. However no energy is transmitted into the body because T, = TI = 0. 
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4.3.3. The compliant l imit  
In this case Zt -+ 0,  and once again we assume that Z, and Z ,  remain non-zero and 

finite; then R+-l ,  and T+O. The reflected wave is now an expansion and the 
transmitted shock is reduced to an acoustic degeneracy, & = Po. In  acoustics it is 
sometimes called the pressure release condition, but we shall call it the compliant 
h i t .  It occurs for example if a normal shock propagating inside a tube encounters 
an opcn end of the tube; since T, = TI = 0,  no energy is transmitted into the second 
medium, so it is also the condition of total internal rejlection. 

Furthermorc, if Zi + 00 and Z, + 00 while 2, remains finite then R + - 1 and T + 0. 
So a shock propagating in a medium of infinite impedance is also totally internally 
reflected if it encounters an interface with another medium of finite impedance. Thus 
extreme impedance mismatch between the media greatly attenuates the transmission 
of energy and power into the receiving medium, T, + TI + 0. 

4.4. T h e  exact theory of normal refraction in a perfect gas 

When the two media satisfy the Bethe conditions described in $3.1, and when their 
initial states, and Upi are given then the Rankine-Hugoniot equations together with 
the boundary conditions (25) and (27) provide a complete one-dimensional solution 
to the normal-shock refraction problem. In particular one can obtain the three 
impedances Zi ,  Z,, and 2,. Conversely if the initial states, Upi,  and the three 
impedances are given then this amounts to a solution of the equations, because there 
are five equations, namely (25) ,  (27), and three impedance definitions (4) for the five 
unknown quantities Up,, Upt ,  (Pl-Po)(P2--P1), and (Pt-Po) .  

For the special case of a perfect gas, this problem can be reduced to the solution 
of a single polynomial equation of degree 4. It is only necessary to substitute the 
Rankine-Hugoniot equations into (25) and (27). If x = PJPo, and y = e / P o ,  then 
after a tedious ca,lculation one can obtain the polynomial in a form that is easy to 
compute, namely, 

4 Y f ( Y -  [ (Yi -  1) +(Ye+ 1) %I2 [(Yi+ 1) Y +  (Yi- 1) XI2 

- 2 4  4 Y t  Yt[(Yi-  1) + (7% + 1) XI [(Ye + 1) Y +  (Yi - 1) XI 

x CE(Yi+ 1) + (Yi-  1)xl (Y - x ) 2  + (x- 
x I(?, -1) + (rt + 1) Y1 + a M ( Y , - - ) +  (rt + 1) Y I 2  

x C“Yi - 1 ) - (3y, - 1) xl x + “yt + 1 1 + (Yi - 1 ) 21 y )  = 0, 

[(ri + 1)  Y +  (Yi- 1) XI> 

( 3 5 )  

where ai ,a ,  are the undisturbed speeds of sound in the incident and transmitting 
media, and y i ,  yt the corresponding ratios of specific heats. When these quantities 
and x arc known then y can be calculated. 

5. Refraction of an oblique shock wave at an interface between two media 
5.1. The boundary conditions and the intensity coeficients 

Once more there is an incident i and transmitted t shock, and a reflected wave that 
can be either a shock r (RRR) or an expansion r (RRE), figures 2(a, b ) .  There is again 
continuity in the pressure across the media interface, so (3), (25), and (30) remain 
valid, but because the waves are no longer parallel to the interface (27) must be 
changed to 

upi cos pi + u,, cos p, = qt cos pt , (36) 
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1 

UP, cos P I  

FIGURE 4. Regular refractions illustrating the components of the particle velocity normal to the 
disturbed interface. (a )  RRR;  ( b )  RRE. 

where ,!Ii, p,, pt are the wave angles ofi ,  r ,  and t ,  measured with respect to the deflected 
interface, figure 4. Equation (36) means that the velocity components of the media 
which are normal to the deflected interface are continuous across it. Now using the 
impedances to eliminate the piston velocities from (36), 

Z,Z,(P,-Po) cospi+z,Z,(P,-P~) cosp, = ZiZr(Pt-Po) cosp, 

Z, Z, cos pi + RZ, Z, cos p, = TZi Z, cos p,, and so 

and eliminating T between (30) and (37) we get 

(37) 

Z,[Z, cos pt - 2, cos pi] 
Z,[Z, cos p, - 2, cos p,] ’ R =  

which reduces to the Rayleigh formula a t  the acoustic limit, 

rt cosp,-r, cosp, 

rt cos pi + ri cos /It  ’ 
R+ (39) 
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as may be easily verified. Substituting (38) into (30) givcs 

Zt[Zi cos p, - z, cos pi] 
Zi[Z, cos p, - z, cos P t ] .  T =  

5.2. The funda?nental law of shock-wave refraction 

If a regular wave system is to retain the same structure as it propagates, then all of 
its waves must proceed a t  the same velocity along any straight trajectory path that 
passes through the wave confluence point. If one takes the path that passes through 
the confluence and coincides with the disturbed interface, then one must have 

where U,, [J,, and U, are the wave velocities of i ,  r ,  and t ,  and all are measured with 
respect to  the origin 0,  which is a t  rest with respect to the undisturbed media 
upstream of the wave system, figure 4. If we wish to take the path coinciding with 
the undisturbed interface, then the velocities are measured with respect to the ncw 
origin 0‘, and the wave angles are now w Z ,  w,, and o,, figure 2. Equation (41) is one 
form of the fundamental law of shock refraction; it evidently reduces to hel l ’s  law 
at  the acoustic limit and the velocities then reduce to the corresponding acoustic- 
wave velocities. 

5.3. The wave refractive index 

From ( l l ) ,  z, = +p, q, 2, = +pt 4, (42) 

and remembering that 2, always has the same sign as Z, we have 

But, from the refraction law, 

therefore 

(43) 

(45) 

When n > 1,  pi > / I t ,  and the transmitted shock t is bent away from a normal to 
the disturbed interface. Conversely, when n < 1, pi < p,, and t will be bent towards 
the normal. The wave will not be refracted when n = 1, because then pt = pi. So we 
see that n is a measure of the capacity of the system to bend or refract a wave. 

5.3.1. The angle of intromission 

There will be no reflected wave when 2, = Zi, and (45) gives 

Pi ui = Pt ut, (46) 

that is, the mass flux through both shocks is equal. However, (46) is not necessarily 
an identity so in general n + 1 and the shock will be refracted. Typically the 
condition appears during the regular refraction transition, RRE + RRR, in which a 
reflected expansion continuously degenerates to a Mach line and then strengthens 
into a reflected shock, or vice versa, under a continuous change of a system 
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parameter, such as the angle of incidence of i. Examples have been given by 
Henderson (1966, p. 623), Abdel-Fattah et al. (1976, p. 164), and Abdel-Fattah & 
Henderson (1978a, pp. 18, 22;  19783, p. 82). Although there is no reflected wave 
when Z, = Zi, nonetheless in general n + 1,  /3, + pi, and thc shock will be refracted 
a t  the interface. Since Z, = 0 a t  this condition, then (38) and (40) give R = 0 and 
T = 1,  which is again the total transmission condition. In acoustics the angle of 
incidence a t  which it occurs is called the angle of intromission and we shall use the 
same term. We can further refine these results as follows. 

5.3.3. The critical angle 

We may write 
cos pt = (1 - sin2 pt = ( 1 - n-2 sin2 pi); ,  (47) 

(i) When n > 1, pt is real and pi > pt as before. 
(ii) When n < 1, and pi < pc, where p, is the critical angle defined such that the 

transmitted shock makes a glancing incidence to the deflected interface pt = in, 
and 

sin p, = Ui/Ut, (48) 

then /3, is still real, but pi < f i t .  At the critical condition t is normal to both the 
disturbed and the undisturbed interface, because pt = tn, so the interface is 
everywhere in a single plane. 

(iii) If n < 2 ,  and pi > p,, then cospt is pure imaginary. We shall find below that 
the regular shock system thcn brcaks up into an irregular system with some form of 
precursor shock, figure 2 ( d ) .  The breakup of the system violates the refraction law 
for the regular system, but it is immediately re-established in a different form for the 
irregular system. 

5.4. The wave impedance for an oblique shock 
5.4.1. Regular refraction with a rejlected shock, RRR 

follows : 
Suppose the impedance for an oblique shock, for example i is redefined as 

PI -1; 
up, cospi 

zi = (49) 

and similarly for r and t .  If these new definitions are substituted into (38) and (40), 
then the R and T for oblique refraction are reduced to the R and T coefficients for 
normal refraction (29) and (31), as may be verified by inspection. One may also 
redefine the oblique-wave intensity as 

and again with similar expressions for I ,  and I,. Then the oblique refraction iritcnsity 
coefficients will also reduce to the normal ones, (21) and (Z), and similarly for the 
power coefficients. It also follows from (49) and from the discussion of $4.4 that when 
the initial conditions of the media together with Up,. p,. and the impedanc+rw of the 
three waves are given then this amounts to a solution of the problem of regular 
refraction. Finally, (49) corrects the Hrndcrson (1970) definition, which suffcrs from 
a similar defect to  the Polachek & Seeger definition. 
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5.4.2. Regular refraction with a reflected expansion RRE 

It is a little more difficult to extend the theory to a regular refraction with a 
reflected expansion (RRE), because there is no single wave angle p, for the expansion 
but a continuum of values. Each expansion wavelet is associated with an infinitesimal 
withdrawing piston velocity dtJp, and for t he j th  wavelet this is dU,, which occurs at 
the angle pj measured with respect to the disturbed interface. The projection of the 
dl& vector onto a normal to the interface is dUpi cospj, so for the entire expansion 
wave the total normal vector component is J,’ cosPj dU,, (figure 4). Although difficult 
t o  evaluate analytically, the integral is easy enough numerically. Now all we have to 
do to incorporate an RRE refraction into the theory is to replace the second term of 
(36) with the integral and define the wave impedance for an expansion fan as 

I rz 

By these means both of the oblique regular refraction systems RRR and RRE can 
be reduced to the corresponding head-on incidence refractions, and the conclusions 
about the acoustic, the rigid, and the compliant limits remain valid for the oblique 
systems. The refraction law is of course 

where V, = aj ,  is the local speed of sound. 

5.5. The numerical solution of the regular-refraction problem 
When a regular refraction has a reflected shock (RRR), its solution(s) requires the 
boundary conditions at the interface, (25) and (36), the refraction law (41), the 
Rankine-Hugoniot equations for all the shocks, and the equation of state. For a 
perfect gas, all of these equations are reducible to  a single polynomial equation of 
twelfth degree in which the unknown variable is the strength Pt/Po of the shock t. The 
polynomial coefficients are given in the Appendix in a form suitable for computation ; 
in fact a programmable calculator with about 2 or 3 K is enough to handle it. 

Closed-form expressions are not available for a regular refraction with a reflected 
expansion (RRE), but numerical solutions for a perfect gas present no difficulty. The 
Prandtl-Meyer equation replaces the Rankine-Hugoniot equation for the reflected 
wave. The theory of R R R  and R R E  is in good agreement with the experiments of 
,Jahn and Abdel-Fattah et al., as they have shown. 

6. The minimum-time principle 
6.1. Regular refraction 

A ray path is traced out by an arbitrary point on a propagating wave ; it will now be 
shown that the palh is one of minimum time, at least for stationary and 
pseudostationary systems. This will extend Fermat’s principle from acoustics to 
shock and expansion waves. The derivation differs from acoustics in that the 
deflection of the interface by the waves must be taken into account,. We demonstrate 
the derivation for the arbitrary point, S ,  on the incident shock, as i t  proceeds along 
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A '  X 

FIGURE 5. Wave diagram and ray-path diagram for a regular refraction with a 
reflected shock wave. 

its ray path to the point P on the transmitted shock, figure 5 .  The time 7 for the point 
on the ray path to pass from S to P is 

Now Ui, U,, are constants along any ray path for a stationary or pseudostationary 
system, so the variations that have to be considered are only those of the direction 
of the ray path. Therefore x1 is the only variable on the right-hand side of the 
equation. If 7 is to have a stationary value for the path, then 

-- dr - o =  - (XO-XI) 

dX1 Ui[2$ + y 9  ut [ ( xo - x1)2 + y ip  

and thus 

13 FLM 198 
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FICVRE 6. A precursor shock wave standing off a blunt wedge. 

so we have recovered the refraction law. A second differentiation easily confirms that 
7 is a minimum. The derivation for the reflected wave, be i t  either a shock or an 
expansion, follows wit,hout difficulty, and extends the minimum-timc principle to 
include this wave. We omit the details. 

When the pressure, temperature, and particle velocity are all constants for the 
undisturbed media then they are in local thermodynamic equilibrium (LTE). When 
the wave velocity is constant along a ray path through a medium in LTE the medium 
behind the wave must also be in LTE so the fact that  a stationary or 
pseudostationary system obeys the refraction law, and therefore that the time has a 
stationary value along a ray path, implies that  the system is in LTE. Let u s  consider 
now the minimum-time condition. Since Ui and U, are constants the ray paths are 
straight lines before and after the interface. But by the minimum-time condition this 
also means that Ui and U, have the maximum values that are compatible with the 
system boundary condition, namely the driving piston velocity UPi. Furthermore, 
the shock Mach numbers, M ,  and M,, will also be maxima, and so therefore will the 
entropy change (production) per unit mass through each shock. Now this is also a 
necessary condition for a system in LTE to be thermodynamically stable (Henderson 
1988). We conclude that the minimum-time principle for a stationary or 
pseudostationary refracting system implies that  the system obeys the refraction law, 
is in LTE, and satisfies a necessary condition for thermodynamic stability. 

6.2. Bound- and free-precursor shocks 

Suppose there is a wedge of apex angle S in a supersonic stream of Mach number 
M,, and such that S exceeds the shock detachment angle S > Sdet, figure 6. The Aow 
along the sloping surface will be subsonic and terminated by a sonic surface ss that 
extends from the wedge corner to  thc shock. The shock stand-off distance d depends 
on M,, S, the properties of the medium, and a boundary lengthscale, such as the 
length 1 of the sloping surface. Since the shock is a t  a non-zero distance d upstream 
of the disturbance that produces i t  (the wedge) we shall say that it is a precursor 
shock. When the flow is in a steady state then d will be constant in time and we shall 
then say that the shock is a bound precursor. 

Suppose now that the lengthscale 1 is growing uniformly with time so that the flow 
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FIGURE 7. Wave diagram and ray path diagram for a free precursor irregular 
shock-wave refraction. 

is pseudostationary (self-similar), then d will also grow uniformly. Wc shall then say 
that the shock is a free precursor. 

6.3. The refraction law for the free-precursor irregular refraction 
Precursor transmitted shocks are observed when the refraction law is violated a t  the 
critical angle p,, (48). However the law is of course instantly re-established in a 
different form for the new system (figure 7 a ) .  For instance, the law is obeyed by the 
transmitted-side shock-wave pair (ts) and separately by the modified shock- 
expansion-wave pair ( k e ) ,  otherwise these local wave systems would also break up. 
The wave systems are usually pseudostationary in shock-tube experiments, so free- 
precursor transmitted shocks are observed (Jahn 1956 ; Abdel-Fattah & Henderson 
1978b; figure 7 a ) .  

In  a pseudostationary system, the distance BC grows uniformly in time. In order 
to derive the refraction law, we shall take the origin of coordinates, 0, on the 
disturbed interface, and chosen in such a way that the point C moves away from 0 
with the velocity +U in the positive x-direction, where x lies along the disturbed 

13-2 
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interface. Similarly, the point B moves away from 0 a t  - U  in the negative 
x-direction. Then the refraction law for the side shock s, and the modified shock, k is 
simply 

-U = 7 

(53) 
p k  

uk 1 US U=-,  
sm P s  

--u = 0 = - uk +u, u, or 

where Us, U,, are the shock-wave velocities and p,,p,, their wave angles with respect 
to the disturbed interface. The law is of course immediately extendable to include the 
t and e waves. 

sin ps sin p, 

The minimum-time principle 

proceeds to D on the s shock, we have, for the time between A and D ,  
Constructing the ray-path diagram for the arbitrary point A on the k shock as it 

In this case there are two independent variables xl, xz, the other quantities on the 
right-hand side are constants. Expanding in a Taylor series about the given path, we 
have, to second order, 

Changing the notation to rX1 = ar/ax,, and so on, and completing the square for the 
second-order terms results in 

dr  = [rx,x1dx1+r,,x2dxz12+ 

Evaluating the derivatives 

1 
- X1 ,+u, a7 -- 

Uk[x~+!dln 

thus 



The refraction of shock waves 383 

The first-order derivatives must be zero if 7 is to have a stationary value, but then 
(54) and (55) give 

sinp, 1 sinp, 1 -+- = 0 = 
'k U, U '  

which gives again the refraction law (53). The stationary value for 7 is clearly a 
minimum by inspection of (56) to (59). 

The principle may now be asserted. An arbitrary point on a shock or an expansion 
wave that is propagating in a stationary or pseudostationary system will trace out a ray 
path of minimum time between any two points on the path irrespective of the medium in 
which the wave i s  moving. 

The principle is applicable to all known stationary and pseudostat ionary regular 
and irregular refracting systems, and it is easily extended to regular and Mach 
reflection by allowing the second medium to approach the rigid limit. The principle 
is more general than for acoustic refraction because it takes into account the 
deflection of the interface by the waves and the fact that a t  least somc of the waves 
are propagating in media that are themselves in motion. 

7. Conclusions 
1. The wave impedance determines the naturc and thc intensity of the reflcctcd 

and transmitted waves, and the fractions of the energy and the power that arc 
reflected and transmitted. In particular : 

( a )  The sign of the transmitted wave impedance Zt is always the same as that of 
the incident wave Z,, so if the incident wave is a shook so also will be the t,ransmit,ted 
wave. 

(b)  (i) When IZJ > lZil then R > 0, T > 0, and the reflected and transmitted waves 
are both shocks. 

(ii) When IZ,( = IZJ, then, R = 0, T, = TI = T = 1, and thcre is a transmittcd 
shock, but no reflected wave. This is the condition for total transmission. 

(iii) When IZ,I < IZJ, R < 0, T > 0, the transmitted wave is again a shock but the 
reflected wave is an expansion. 

(c) (i) A t  the acoustic limit, where the wave irnpedanccs corrcqwnd to tha actoustia 
impedances, R,  (29), and T ,  (31), reduce to  the symmetric: acoustic: formulas and 
display the principle of acoustic reciprocity. However the principle cannot bc applied 
to shock waves because (29) and (31) are not syrnmctrical, except, a t  the> limit. 

(ii) At the rigid limit, IZJ + co, R, + R+Z,/Zi > 0, T + 1 + Z , / i s i ,  7; +TI + O ,  so  a 
shock penetrates a rigid body with an increase in intensity, but with no transmitted 
energy. 

(iii) At the compZiant limit, 2, + 0, R + - 1, T, --f TI --f 5" --f 0, there is no t,ransmitted 
shock and no transmitted energy; this is the condition of total intcmal rctloction, or 
pressure release. The reflected wave is an expansion. 

2. All of these conclusions may be extended to oblique shocks by a suitable 
definition of oblique-wave impedance and intensity, equations (49) and (50).  

3. The fundamental law of refraction expresses thc condition that all tht  waves 
meeting a t  a point must propagate a t  thc same velocity along any trajectory path 
that passes through the point if the wave system is to bc st,at,ionary or 
pseudostationary . 
4. A wave will be bent or refracted whenever it cncountors a ohangc in the 

refractive index n, (45), of the medium in which it is propagating. This is oyuivalcnt 
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to a change in the direction and, or, the magnitude of the wave velocity vector U .  
in particular : 

(a )  When n < 1 and Pi < Pc, where P,, (48), is the angle of intromission, then the 
shock is bent towards the normal to the interface (its slope is increased by refraction), 

(b )  When n = 1 ,  there is no refraction even though the wave impedance may 

(c) When n > 1,  the shock is bent away from the normal and becomes less steep, 

(d )  When pi > PC, then COUP,, (47) is pure imaginary. When this happens to a 
regular refraction the system breaks up, violating the refraction law, and resulting 
in the appearance of an irregular wave system with precursor shocks. The refraction 
law is instantly re-established for the new system. 

5. Stationary and pseudostationary wave systems obey a minimum-time principle, 
that is, the propagation time is a minimum between any two points along an 
arbitrary wave ray path. The principle is a generalization of Fermat’s Principle for 
acoustic waves, and implies that  the system is in LTE and that its production of 
entropy is a maximum, which is a necessary condition for thermodynamic stability. 
The st,ationary time condition implies the refraction law. 

Pi < Pt. 

change, (45). 

Pi > Pi. 

Appendix. Regular refraction of a plane shock wave in a perfect gas where 
the reflected wave is a shock, RRR 

The exact polynomial equation 

The equation is of degree 12 and of the form 

9 

c &Ti = 0, 
I=1 

where Ri and 
in all. However twelve of them are simple multiples of the other six. If 

are polynomials each of degree 6, so there are 18 polynomial factors 

x = PJP, 

is the dependent variable, and 

A = cosf30; 

b, = l + y i M ; ;  

a1 = PO/Pl, 

6, = l + y i M ; ,  

bt = 1+y,M,2; 

Y i - 1 .  
’i Y i + l ’  
c =- 
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where M,, M I ,  M ,  are the free-stream Mach numbers upstream ofthe i, r ,  and t shocks 
respectively, and pi, pLt are the molecular weights of the incident and transmitting 
media, then 

R, G ( ~ , - x ) ~ ( c , + x ) ' ;  TI E (b,  - a,  x ) ,  (ci +a, x),, 

R, = -2A2T,; T, = TI ,  

R, - 2A2R, ; 

R, = A4T, ; 

R, = A4R, ; 

T3 = (b ,  - a,  x)' (ci + a, X )  (a ,  2 - 1)' ( d ,  - a, x ) ,  

T, = T,, 

T5 = R,, 

R, = - 2(A4 + 4A2 + 1) T3 ; T, = (b ,  - 2)' (ct + X )  ( x -  1)' (d, - x ) ,  

R, = - 2A2T3 ; T, = T,, 
T = T  = R, R, - 2A2T6 ; a -  5 -Rw 

R, = (a ,X-1)4(dl-alX)2;  T, = (X-1)4(dt-X)2.  

REFEREPU'CES 

ABDEL-FATTAH, A. M., HENDERSON, L. F.  & LOZZI, A. 1976 Precursor shock waves at a slow-fast 
gas interface. J .  Fluid Mech. 76, 157-176. 

ABDEL-FATTAH, A. M. & HENDERSON, L. F. 1978a Shock waves at a fast-slow interface. J .  Fluid 
Mech. 86, 15-32. 

ABDEL-FATTAH, A. M. & HENDERSON, L. F. 1978b Shock waves at a slow-fast gas interface. 
1. Ftuid Mech. 89, 79-95. 

AMES RESEARCH STAFF 1953 Equations, tables and charts for compressible flow. NACA Rep. 
1135. 

BETHE, H. A. 1942 The theory of shock waves for an arbitrary equation of state. O S R D  Rep. 
545. 

CATHERSOO, C. J. & STURTEVANT, B. 1983 Shock dynamics in non-uniform media. J .  Fluid Mech. 

COURANT, R. & FRIEDRICHS, K. 0. 1948 Supersonic Flow and Shock Waves. Interscience. 
DEWEY, J. M. 1965 Precursor shocks produced by a large-yield chemical explosion. Nature 205, 

1306. 
FLORES, J. & HOLT, M. 1982 Shock wave interactions with the ocean surface. Phys. Fluids 25, 

238-246. 
FRY, M. A. & BOOK, D. L. 1986 Shock dynamics in heated layers. I n  Proc. 15th Zntl Symp .  on 

Shock Waves and Shock Tubes (ed. D. Bershader & R. Hanson), pp. 517-522. Stanford 
University Press. 

GLOWACKI, W. J . ,  KUHL, A. L., GLAZ, H. hf. & FERGUSON, R. E. 1986 In  Proc. 15th Intl Symp. on, 
Shock Waves and Shock Tubes (ed. D. Bershader & R. Hanson), pp. 187-194. Stanford 
University Press. 

GVOZDEAVA, L. G., FARESOV, Yu, M., BROSSARD, J .  & CHARPENTIER, N. 1986 Normal shock wave 
reflexion on porous compressible material. Prog. Astron. Aeron. 106, 155-165. 

HAAS, J.  F. & STURTEVANT. B. 1987 Interaction of weak shock waves with cylindrical and 
spherical gas inhomogeneities. J .  Fluid Mech. 181, 41-76. 

HENDERSON, L. F. 1966 The refraction of a plane shock wave at a gas interface. J .  Fluid Mech,. 

HENDERSON, L. F. 1970 On shock impedance. J .  Fluid Mech. 40, 719-735. 
HENDERSON, L. F. 1988 On the thermodynamic stability of steady-state adiabatic systems. 

127, 534-561. 

26, 607-637. 

J .  Fluid Mech. 189, 509-529. 



386 L. F .  Henderson 

JAHN, R. G. 1956 The refraction of shock waves a t  a gaseous interface. J .  Fluid Mech. 1, 
457489. 

KINSLER, L. E., FREY, A. R., COPPENS, A. B. & SANDERS, J. V. 1982 Fundamentals of Acoustics. 
Wiley. 

MARKSTEIN, ci. H. 1964 Experimental studies of flame-front instability. Nonsteadly Flixrne 
Propagation, AGARDograph 75, pp. 75-100. Pergamon. 

KEUMANN, J. VON 1943 Oblique reflexion of shock waves. In Collected Works, Vol. 6, pp. 23&299. 
Pergamon . 

PICONE, J. M., BORIS, J .  P., ORAN, E. S. & AHEARNE. R. 1986 Rotational motion generated by 
shock propagation through a non-uniform gas. In  Proc. 15th Intl Symp. on Rhock Wa.ves and 
h'hock Tubes (ed. D. Bershader & R. Hanson), pp. 523-529. Stanford University Press. 

PICONE, <J. M.,  ORAN, E. S., BORIS, J. P. & YOUNQ, T. R. 1984 Theory of vorticity generation by 
shock wave and flame interactions. Prog. Astron. Aeron. 94, 429-448. 

POLACHEK, H. & SmaER, R. J. 1951 On shock wave phenomena; refraction of shock waves a t  a 
gaseous interface. Phys. Rev. 84, 922-929. 

REICHENBACH, H. 1985 Roughness and heated layer effects on shock wave propagation and 
reflection-experimental results. E-Mach-lnst. Rep. E24/85. Frieberg : Fraunhofer-Gesellschaft. 

SOMMERFELD, M. 1985 The unsteadiness of shock waves propagating through gas-particle 
mixtures. Expts Fluids 3 ,  197-206 

SUGIMURA, T., TOKITA, K .  & FUJIWARA, T. 1984 Nonsteady shock wave propagating in a bubble- 
liquid system. Prog. Astron. Aeron. 94, 32&331. 

TAUB, A. H. 1947 Refraction of plane shock waves. Phys. Rev. 72, 51-60. 




